AerE 311L & AerE343L Lecture Notes

Lecture #12: Shock Waves and De Lavai Nozzie

Dr. Hui Hu Dr. Rye M Waldman

Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A

Sources/ Further reading: Anderson, "Fundamentals of Aerodynamics" Part 3 Chs 7 & 8

Subsonic, Transonic, Supersonic and hypersonic Flows

Subsonic flows:	M<1.0
Transonic flows:	M≈1.0

Supersonic flows: M>1.0

Hypersonic flows: M>5.0

Sonic boom

ngineering

<u>Copyright © by Dr. Hui Hu @ Iowa State</u>

Subsonic and Supersonic Flow

a. Stationary sound source

b. Source moving with $V_{source} < V_{sound}$

Aerospace Engineering

c. Source moving with $V_{source} = V_{sound}$ (Mach 1 - breaking the sound barrier)

d. Source moving with V_{source} > V_{sound} (Mach 1.4 - supersonic)

Shock Waves

down, but remains

supersonic)

behind the shock wave is higher

supersonic)

(The airstream slows to subsonic)

IOWA STATE UNIVERSITY

Thrust = $\mathbf{F} = \dot{\mathbf{m}} \mathbf{V}_{e} + (\mathbf{p}_{e} - \mathbf{p}_{0}) \mathbf{A}_{e}$

Assumptions:

- Steady-state
- Inviscid
- No body forces

Quasi-1D:

• Area is allowed to vary but flow variables are considered a function of x only

Mass conservation

$$\iint_{V} \frac{\partial \rho}{\partial t} dV + \iint_{S} \rho \overline{U} \cdot \overline{n} dS = 0$$

Momentum conservation

$$\frac{\partial}{\partial t} \iiint_{V} \rho \overline{U} dV + \iint_{S} \rho \left(\overline{U} \cdot \overline{n} \right) \overline{U} dS = -\iint_{S} p dS + \iiint_{V} \rho \overline{f} dV + F_{viscous}$$

Energy conservation

$$\frac{\partial}{\partial t} \iiint_{V} \rho \left(e + \frac{U^{2}}{2} \right) dV + \iint_{S} \rho \left(e + \frac{U^{2}}{2} \right) \overline{U} \cdot \overline{n} dS = -\iint_{S} p \overline{U} \cdot \overline{n} dS + \iiint_{V} \rho \frac{\partial q}{\partial t} dV + \iiint_{V} \rho \left(\overline{f} \cdot \overline{U} \right) dV$$

Aerospace Engineering

Assumptions:

- Steady-state
- Inviscid
- No body forces

A, u, A+dA A, u, u+du r +d r B

Quasi-1D:

 Area is allowed to vary but flow variables are considered a function of x only

$$\iiint\limits_{V} \frac{\partial \rho}{\partial t} dV + \iint\limits_{S} \rho \overline{U} \cdot \overline{n} dS = 0$$

Mass conservation

$$-\rho u A + (u + du)(\rho + d\rho)(A + dA) = 0$$

 $-\rho uA + \rho uA + \rho udA + \rho duA + d\rho uA + higher order terms = 0$

$$\rho A u = Const.$$
$$\frac{dA}{A} + \frac{d\rho}{\rho} + \frac{du}{u} = 0$$

Isentropic relations (Thermodynamics):

$$\frac{P_2}{P_1} = (\frac{\rho_2}{\rho_1})^{\gamma} = (\frac{T_2}{T_1})^{\frac{\gamma}{\gamma-1}}$$

$$\begin{split} C_{P}T_{0} &= C_{P}T + \frac{V^{2}}{2} \Longrightarrow \frac{T_{0}}{T} = 1 + \frac{V^{2}}{2C_{P}T} = 1 + \frac{\gamma - 1}{2} \frac{V^{2}}{\gamma RT} \\ &\frac{T_{0}}{T} = 1 + \frac{\gamma - 1}{2} M^{2} \\ &\frac{P_{0}}{P} = \left(1 + \frac{\gamma - 1}{2} M^{2}\right)^{\frac{\gamma}{\gamma - 1}} \\ &\frac{\rho_{0}}{\rho} = \left(1 + \frac{\gamma - 1}{2} M^{2}\right)^{\frac{1}{\gamma - 1}} \end{split}$$

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Energy Equation:

Test Section

Tank with compressed air

AerE344 Lab: Pressure Measurements in a de Laval Nozzle

Tank with compressed air

Test section

Tap No.	Distance downstream of throat (inches)	Area (Sq. inches)
1	-4.00	0.800
2	-1.50	0.529
3	-0.30	0.480
4	-0.18	0.478
5	0.00	0.476
6	0.15	0.497
7	0.30	0.518
8	0.45	0.539
9	0.60	0.560
10	0.75	0.581
11	0.90	0.599
12	1.05	0.616
13	1.20	0.627
14	1.35	0.632
15	1.45	0.634

Nozzle Pressure Tap Numbering Diagram

1st, 2nd, and 3rd critical conditions

AerE344 Lab: Pressure Measurements in a de Laval Nozzle

- 1. Under-expanded flow
- 2. 3rd critical
- 3. Over-expanded flow with oblique shocks
- 4. 2nd critical
- 5. Normal shock existing inside the nozzle
- 6. 1st critical

1st, 2nd, and 3rd critical conditions

Pressure Distribution Prediction within a De Laval Nozzle by using Numerical Approach

d. To calculate Mach number given the Mach-Area relation, can use Newton iteration to find M

$$F = \left(\frac{A}{A^*}\right)^2 = M^2 \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M^2\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$
(2.8)

$$F' = \frac{dF}{dM} = \frac{2}{M^3} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{\gamma - 1}} - \frac{2}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma}{\gamma - 1}}$$
(2.9)
$$M^{n+1} = M^n - \frac{F}{F'}$$
(2.10)

 Using the area ratio, the Mach number at any point up to the shock can be determined:

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M^2\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

 After finding Mach number at front of shock, calculate Mach number after shock using:

$$M_{2}^{2} = \frac{1 + \frac{\gamma - 1}{2} M_{1}^{2}}{\gamma M_{1}^{2} - \frac{\gamma - 1}{2}}$$

 \bullet Then, calculate the ${\sf A_2}^{\star}$

$$\left(A_{2}^{*}\right)^{2} = M_{2}^{2}A_{s}^{2}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}M_{2}^{2}\right)\right]^{-\frac{\gamma+1}{\gamma-1}}$$

which allows us calculate the remaining Mach number distribution

$$\left(\frac{A}{A_{2}^{*}}\right)^{2} = \frac{1}{M^{2}} \left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}M^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

Pressure Distribution Prediction within a De Laval Nozzle by using Numerical Approach

- 2. Find pressure distribution
 - a. Pressure at exit is same as atmospheric pressure for shock inside nozzle $(P_e = P_{atm})$. For shock after lip of nozzle, total pressure is constant throughout the interior of the nozzle $(P_{t2} = P_{t1})$.
 - b. Find total pressure behind the shock:

$$P_{t2} = \frac{P_{t2}}{P_e} P_e \text{ where } \frac{P_{t2}}{P_e} = \left(1 + \frac{\gamma - 1}{2} M_e^2\right)^{\frac{\gamma}{\gamma - 1}}$$
(2.4)

c. Any pressure behind the shock is therefore:

$$P = P_{t2} \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}}$$
(2.5)

d. Calculate P_{t1} ahead of shock:

$$P_{t1} = \frac{P_{t1}}{P_1} \frac{P_1}{P_2} \frac{P_2}{P_{t2}} P_{t2}$$
(2.6)

where you can use Total-Static relation for 1^{st} and 3^{rd} ratios, and for the middle ratio:

$$\frac{P_1}{P_2} = \frac{1 + \gamma M_2^2}{1 + \gamma M_1^2}$$

or
$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1} (M_1^2 - 1)$$
(2.7)

e. Now that you have the total pressure upstream of the shock, as well as the Mach number calculated earlier you can calculate the pressure upstream of the shock.

a.For 3rd Critical			
$1. P_1 = P_2 = P_e$			
$2. M_1 = M_2 = M_e$ (supersonic)			
b. For 1 st Critical			
1.Same as 3^{rd} critical, but M_e is subsonic			
c. For 2 nd Critical			
$1.M_2 = M_e$			
$2. P_2 = P_e$			
Aerospace Engineering			

Pressure Distribution Prediction within a De Laval Nozzle by using Numerical Approach

Tap No.	Distance downstream of throat (inches)	Area (Sq. inches)
1	-4.00	0.800
2	-1.50	0.529
3	-0.30	0.480
4	-0.18	0.478
5	0.00	0.476
6	0.15	0.497
7	0.30	0.518
8	0.45	0.539
9	0.60	0.560
10	0.75	0.581
11	0.90	0.599
12	1.05	0.616
13	1.20	0.627
14	1.35	0.632
15	1.45	0.634

• If the shockwave is located at position of tap#12:

• Method #1, by using equations:

$$\left(\frac{A}{A^{*}}\right)^{2} = \frac{1}{M^{2}} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

 Method #2: by using Isentropic Flow properties table (Appendix-A of Anderson's textbook)

Tap No.	A/A*	Mach #	P/P_t	Р	Pg
1	1.681	0.37	0.9098		
2	1.111	0.67	0.7401		
3	1.008	0.97	0.5469		
5	1.000	1.00	0.5283		
7	1.088	1.35	0.3370		
9	1.176	1.50	0.2724		
11	1.258	1.61	0.2318		
pre-shock	1.294	1.64	0.2217		
post-shock					
13					
15					

Pressure Distribution Prediction within a De Laval Nozzle by using Table Method

- By using the normal shock tables with M1 = 1.64 we find that M2 = 0.686. (Appendix-B of Anderson's textbook)
- Next, we find the sonic reference area behind the shock using the area-Mach relation. i.e., M2=0.686 (Appendix-A of Anderson's textbook)
- Find sonic reference behind the shock using the area-Mach relationship:

$$\left(A_{2}^{*}\right)^{2} = A_{5}^{2} M_{2}^{2} \left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2} M_{2}^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}}$$

i.e., A2*=0.557sq. Inches

If the shockwave is located at position of tab#12:

Tap No.	A/A*	Mach #	\mathbf{P}/\mathbf{P}_t	Р	Pg
1	1.681	0.37	0.9098		
2	1.111	0.67	0.7401		
3	1.008	0.97	0.5469		
5	1.000	1.00	0.5283		
7	1.088	1.35	0.3370		
9	1.176	1.50	0.2724		
11	1.258	1.61	0.2318		
pre-shock	1.294	1.64	0.2217		
post-shock	1.105	0.69	0.7274		
13					
15					

Pressure Distribution Prediction within a De Laval Nozzle by using Table Method

• With the exit pressure to be sealevel standard pressure. We now calculate the total pressure behind the shock using this value of exit pressure and the pressure ratio at the exit:

$$P_{t2} = \frac{P_t}{P} P = \left(\frac{1}{0.7528}\right) 14.7 = 19.53$$

 Our last major task is to find the total pressure ahead of the shock, P_{t1}

$$P_{t1} = \frac{P_{t1}}{P_1} \frac{P_1}{P_2} \frac{P_2}{P_{t2}} P_{t2}$$

Tap No.	A/A*	Mach #	P/P_t	Р	Pg
1	1.681	0.37	0.9098		
2	1.111	0.67	0.7401		
3	1.008	0.97	0.5469		
5	1.000	1.00	0.5283		
7	1.088	1.35	0.3370		
9	1.176	1.50	0.2724		
11	1.258	1.61	0.2318		
pre-shock	1.294	1.64	0.2217		
post-shock	1.105	0.69	0.7274	14.21	
13	1.125	0.66	0.7465	14.58	
15	1.137	0.65	0.7528	14.7	
Tep No	A / A *	Mach #	D/D	р	Ъ
Tap No.	A/A ·		P/Pt	P	Fg
1	1.681	0.37	0.9098	19.6	4.9
2	1.111	0.67	0.7401	16	1.3
3	1.008	0.97	0.5469	11.8	-2.9
5	1.000	1.00	0.5283	11.4	-3.3
7	1.088	1.35	0.3370	7.27	-7.43
9	1.176	1.50	0.2724	5.88	-8.82
11	1.2.58	1.61	0.2318	5	-9.7
pre-shock	1.294	1.64	0.2217	4.78	-9.92
post-shock	1.105	0.69	0.7274	14.21	-0.49
13	1.125	0.66	0.7465	14.58	-0.12
15	1.137	0.65	0.7528	14.7	0

Examples of the previous lab reports

AerE344 Lab#10: Set up Schlieren and Shadowgraph Systems to Visualize a Thermal Plume Flow of a Burning Candle

Schlieren image of a the thermal plume of a burning candle

AerE344 Lab#10: Set up Schlieren and Shadowgraph Systems to Visualize a Thermal Plume Flow of a Burning Candle

- Set up Schlieren and Shadowgraph Systems to visualize a thermal plume flow .
- Sign-in sheet signature.
- No lab report.

