Flat Belt Drive Design Calculator				
Blue cells editable				
diameter of the small pulley d =	0.355	m		
radius small pulley r =	0.178	m		
diameter of the large pulley D =	0.500	m		
cross-sectional area of the belt A =	0.000350	m ²		
distance between the pulley centers C =	1.800	m		
belt speed (velocity) V =	1500.000	rev/min		
belt speed (velocity) V =	27.882	m/s		
maximum permissible belt stress σ_{max} =	11000000	N/m ²		
belt tension in the slack side F_2 =	2.00	N		
belt tension in the tight side F_1 =	60.00	N		
mass per unit of belt m =	0.00350	kg/m ³		
Results				
Eq. 1, angle of contact belt - small pulley θ_d =	3.061	rad		
Eq. 1, angle of contact belt - small pulley θ_d =	175.383	deg		
Eq. 2, angle of contact belt - large pulley θ_D =	3.222	rad		
Eq. 2, angle of contact belt - large pulley θ_D =	184.617	deg		
Eq.3, length of the belt L =	4.946	m		
Eq. 4, Power transmitted P =	1.617e+3	Watts		
Eq. 5, torque T =	10.295	N-m		
Eq. 7, centrifugal forces F_c =	7875.000	N		

Required cross-sectional area Calculator				
belt tension in the tight side F_1 =	12000.000	N		
belt tension in the slack side F_2 =	2.000	N		
stress belt tight side σ_1 =	2.300e+008	N/m ²		
stress belt slack side σ_2 =	3.000e+002	N/m ²		
Results				
required cross-sectional area from stress A =	5.217e-5	m ²		
required cross-sectional area from stress A =	0.0522	mm ²		

Power capacity of belt Calculator				
diameter of the large pulley D =	0.500	m		
diameter of the small pulley d =	0.355	m		
radius small pulley r =	0.178	m		
distance between the pulley centers C =	1.500	m		
flat belt thickness t =	0.00350	m		
flat belt width w =	0.10000	m		
belt speed (velocity) V =	1500.00	rev/min		
coefficient of friction μ =	0.800	-		
density of belt ρ =	1100.000	kg/m³		
maximum permissible belt stress σ_{max} =	11000000	N/m ³		
Results				
Eq. 1, angle of contact belt - small pulley θ_d =	3.0449	rad		
Eq. 1, angle of contact belt - small pulley θ_d =	174.459	deg		
Eq. 2, angle of contact belt - large pulley θ_D =	3.061	rad		
Eq. 2, angle of contact belt - large pulley θ_D =	175.383	deg		
flat belt cross section area A =	3.500e-4	m²		
belt tension in the tight side F_1 =	3850.00	N		
belt speed (velocity) V =	27.882	m/s		
mass per unit length m =	0.385	kg/m		
centrifugal forces F _c =	299.293	N		
Eq. 7a, belt tension on slack side F_2 =	610.045	N		
Eq. 4, power capacity P =	90335.25	Watts		