Related Resources: Engineering Materials
Metal Matrix Composites Handbook, Volume 4
Manufacturing Engineering and Design
Engineering Materials
Composites Materials Handbook, Volume 4
Metal Matrix Composites
Premium Membership Required to view Document/Book
Related:
- Composites Materials Handbook, Volume 1
- Composites Materials Handbook, Volume 2
- Composites Materials Handbook, Volume 3
- Composites Materials Handbook, Volume 5
Open:
Composites Materials Handbook, Volume 4
Introduction:
Metal Matrix Composites volume 4 contains guidelines for determining the properties of composite material systems, their constituents, and generic structural elements, including test planning, test matrices, sampling, conditioning, test procedure selection, data reporting, data reduction, statistical analysis, and other related topics. Special attention is given to the statistical treatment and analysis of data. Section 1 contains guidelines for general development of material characterization data as well as specific requirements for publication of metal matrix composite material.
It must be emphasized that this handbook differentiates between material basis values (material allowables) and design allowable values. Material basis values, being an intrinsic property of a composite material system, are the focus of this handbook. Design allowable values, while often rooted in material basis values, are application dependent, and consider and include specific additional considerations that may further affect the strength or stiffness of the structure.
TOC
1. GUIDELINES.. 1
1.1 GENERAL INFORMATION.. 1
1.1.1 INTRODUCTION . 1
1.1.2 PURPOSE .. 1
1.1.3 SCOPE . 1
1.1.3.1 Section 1: Guidelines.. 2
1.1.3.2 Section 2: Utilization of data 3
1.1.3.3 Section 3: Material property data.. 3
1.1.4 USE OF THE DOCUMENT AND LIMITATIONS.. 3
1.1.4.1 Source of information .. 3
1.1.4.2 Use of data and guidelines in applications 3
1.1.4.3 Strength properties and allowables terminology. 4
1.1.4.4 Use of References. 4
1.1.4.5 Use of tradenames and product names . 4
1.1.4.6 Toxicity, health hazards, and safety.. 4
1.1.4.7 Ozone depleting chemicals .. 4
1.1.5 APPROVAL PROCEDURES.. 5
1.1.6 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS.. 5
1.1.6.1 Symbols and abbreviations .. 5
1.1.6.1.1 Constituent properties 11
1.1.6.1.2 Laminae and laminates.11
1.1.6.1.3 Subscripts .. 12
1.1.6.1.4 Superscripts .. 13
1.1.6.1.5 Acronyms 13
1.1.6.2 Material system codes.. 15
1.1.6.3 System of units . 15
1.1.7 DEFINITIONS. 17
REFERENCES 31
1.2 INTRODUCTION TO MMC MATERIALS .. 32
1.2.1 INTRODUCTION .. 32
1.2.2 MMC SYSTEMS 32
1.2.2.1 Systems definitions. 32
1.2.2.2 Distinction from other materials/composites . 32
1.2.3 MATRIX MATERIALS . 32
1.2.3.1 Role of matrix materials 33
1.2.3.2 Forms of matrix materials 33
1.2.3.3 Types of matrix materials 34
1.2.3.3.1 Aluminum 34
1.2.3.3.2 Copper . 36
1.2.3.3.3 Iron . 36
1.2.3.3.4 Magnesium. 36
1.2.3.3.5 Nickel 36
1.2.3.3.6 Titanium 36
1.2.4 REINFORCEMENT MATERIALS . 36
1.2.4.1 Types of reinforcement. 37
1.2.4.2 Role of reinforcement 37
1.2.5 REINFORCEMENT COATINGS 37
1.2.5.1 Role of coatings 37
1.2.5.2 Types of coatings. 37
1.2.6 MANUFACTURING PROCESSES.. 38
1.2.6.1 Overview and General Information. 38
1.2.6.2 Assembly and consolidation .. 38
1.2.6.2.1 Powder blending and consolidation 38
1.2.6.2.2 Consolidation diffusion bonding .. 38
1.2.6.2.3 Vapor deposition.. 38
1.2.6.2.4 Squeeze casting and squeeze infiltration 39
1.2.6.2.5 Spray deposition.. 39
1.2.6.2.6 Slurry casting (compocasting).. 39
1.2.6.2.7 Reactive processing (in-situ composites) .. 39
1.2.6.3 Thermomechanical processing 39
1.2.6.4 Near net shape manufacturing processes . 40
1.2.7 PRODUCT FORMS. 40
1.2.7.1 Intermediate 40
1.2.7.2 Standard .. 40
1.2.7.3 Selectively reinforced components. 40
1.2.8 SECONDARY MANUFACTURING PROCESSES .. 40
1.2.8.1 Overview and general information.. 40
1.2.8.2 Forming 40
1.2.8.3 Machining 40
1.2.8.4 Joining .. 40
1.2.8.4.1 Qualitative assessment for MMC joining methods. 40
1.2.8.4.2 Potential issues in joining MMCs 41
1.2.8.4.3 Classification and discussion of selected joining methods 43
1.2.8.5 Thermal treatment . 47
1.2.8.6 Coatings and surface treatments 47
1.2.9 QUALITY ASSURANCE 48
1.2.9.1 Constituents 48
1.2.9.2 Preform. 48
1.2.9.3 Final product.. 48
1.2.9.4 Statistical process control 48
1.2.10 REPAIR. 48
1.2.10.1 In-process 48
1.2.10.2 In-service . 48
REFERENCES 49
1.3 TEST PLANS FOR MATERIALS CHARACTERIZATION.. 51
1.3.1 INTRODUCTION .. 51
1.3.1.1 Objective.. 51
1.3.1.2 Classes of data. 51
1.3.2 REQUIREMENTS. 51
1.3.2.1 Test method selection 51
1.3.2.2 Test conditions selection . 52
1.3.2.3 Specimen number and sampling . 52
1.3.2.4 Specimen preparation 53
1.3.2.5 Data documentation Requirements Checklist .. 58
1.3.3 MATERIALS PEDIGREE .. 63
1.3.3.1 Reinforcement .. 63
1.3.3.2 Reinforcement sizing. 63
1.3.3.3 Reinforcement coatings 63
1.3.3.4 Matrix. 63
1.3.3.5 Intermediate forms characterization .. 63
1.3.3.5.1 Metallized fibers .. 63
1.3.3.5.2 Monotapes . 63
1.3.3.5.3 Lamina other than monotapes . 63
1.3.3.5.4 Specialized forms 63
1.3.3.6 Composite materials.. 63
1.3.4 CONTINUOUS FIBER REINFORCED MMC CONSTITUENT MATERIAL PROPERTIES. 64
1.3.4.1 Screening 64
1.3.4.2 Acceptance testing of composite materials 64
1.3.4.2.1 Composite static properties tests 64
1.3.4.2.2 Composite fatigue properties tests 65
1.3.4.2.3 Composite thermal mechanical tests 65
1.3.4.2.4 Composite physical properties tests . 66
1.3.4.3 Intermediate forms characterization .. 66
1.3.4.3.1 Metallized fibers .. 66
1.3.4.3.2 Monotapes . 66
1.3.4.3.3 Lamina other than monotapes . 66
1.3.4.3.4 Specialized forms 66
1.3.4.4 Constituent characterization .. 66
1.3.4.4.1 Fiber properties tests 67
1.3.4.4.2 Matrix 67
1.3.5 DISCONTINUOUS REINFORCED MMC & CONSTITUENT MATERIAL PROPERTIES. 68
1.3.5.1 Screening 68
1.3.5.2 Acceptance testing of composite materials 68
1.3.5.2.1 Composite static properties tests 68
1.3.5.2.2 Composite fatigue properties tests 68
1.3.5.2.3 Composite thermal mechanical tests 68
1.3.5.2.4 Composite physical properties tests . 68
REFERENCES 69
1.4 COMPOSITE TESTING AND ANALYTICAL METHODS 70
1.4.1 INTRODUCTION .. 70
1.4.2 CONTINUOUS FIBER REINFORCED MMC MECHANICAL PROPERTY TEST METHODS.. 70
1.4.2.1 Tension . 70
1.4.2.2 Compression . 70
1.4.2.3 Shear (in-plane) 71
1.4.2.4 Fatigue.. 71
1.4.2.4.1 Scope 71
1.4.2.4.2 Specimen design. 71
1.4.2.4.3 Waveforms. 71
1.4.2.4.4 Control mode. 71
1.4.2.4.5 Compressive loading. 72
1.4.2.4.6 Failure .. 72
1.4.2.4.7 Data reporting .. 72
1.4.2.5 Fatigue crack growth rate 72
1.4.2.6 Creep/stress rupture.. 77
1.4.2.7 Pin bearing tension. 77
1.4.2.8 Pin bearing compression. 77
1.4.2.9 Filled hole tension 77
1.4.2.10 Open hole tension/notch sensitivity 77
1.4.2.11 Flexure (three-point bend) .. 77
1.4.2.12 Filled hole compression 77
1.4.2.13 Fiber pushout tests . 77
1.4.2.13.1 Background 77
1.4.2.13.2 General. 78
1.4.2.13.3 Description of the method .. 79
1.4.2.13.4 Significance and use . 79
1.4.2.13.5 Apparatus 79
1.4.2.13.6 Indenter 80
1.4.2.13.7 Support plate . 82
1.4.2.13.8 Acoustic emission sensor 82
1.4.2.13.9 Displacement sensor. 82
1.4.2.13.10 Remote viewing using a microscope/camera .. 83
1.4.2.13.11 Test specimen preparation . 83
1.4.2.13.12 Test procedure . 85
1.4.2.13.13 Effects of environment . 85
1.4.2.13.14 Analysis of results .. 86
1.4.2.14 Microhardness .. 89
1.4.2.15 Thermomechanical fatigue (TMF) (in-phase/out-of-phase) 89
1.4.2.15.1 Scope 89
1.4.2.15.2 Specimen design. 89
1.4.2.15.3 Temperature control and measurement.. 89
1.4.2.15.4 Waveforms. 90
1.4.2.15.5 Phasing 90
1.4.2.15.6 Pre-test measurements 91
1.4.2.15.7 Starting the test 92
1.4.2.15.8 Data reporting 92
1.4.2.16 Residual strength and stiffness. 93
1.4.2.17 Bearing fatigue.. 93
1.4.2.18 Open hole fatigue. 93
1.4.2.19 Filled hole fatigue. 93
1.4.2.20 Corrosion fatigue.. 93
1.4.2.21 Stress corrosion cracking. 93
1.4.2.22 Wear .. 93
1.4.2.23 Impact 93
1.4.2.24 Damping 93
1.4.3 DISCONTINUOUS REINFORCED MMC MECHANICAL PROPERTY TEST METHODS.. 93
1.4.3.1 Tension . 93
1.4.3.2 Compression . 94
1.4.3.3 Shear (in-plane) 94
1.4.3.4 Fracture toughness 94
1.4.3.5 Fatigue.. 94
1.4.3.6 Fatigue crack growth . 94
1.4.3.7 Creep/stress rupture.. 94
1.4.3.8 Corrosion fatigue . 94
1.4.3.9 Stress corrosion cracking 94
1.4.3.10 Wear .. 94
1.4.3.11 Impact 94
1.4.3.12 Damping 94
1.4.4 PHYSICAL PROPERTY TEST METHODS . 94
1.4.4.1 Density.. 94
1.4.4.2 Fiber volume fraction. 94
1.4.5 MICROSTRUCTURAL ANALYSIS TECHNIQUES.. 95
1.4.5.1 Titanium matrix composites 95
1.4.6 CHEMICAL ANALYSIS TECHNIQUES.. 97
1.4.6.1 Analysis of carbon and sulfur 97
1.4.6.2 Analysis for oxygen and nitrogen by inert gas fusion 98
1.4.7 NON-DESTRUCTIVE EVALUATION TEST METHODS 98
1.4.8 ENVIRONMENTAL EFFECTS TEST METHODS. 99
1.4.9 INTERPHASES AND INTERFACES TEST METHODS 99
REFERENCES . 100
1.5 INTERMEDIATE FORMS TESTING AND ANALYTICAL METHODS 105
1.5.1 INTRODUCTION 105
1.5.2 MECHANICAL PROPERTY TEST METHODS 105
1.5.3 PHYSICAL PROPERTY TEST METHODS .. 105
1.5.4 MICROSTRUCTURAL ANALYSIS TECHNIQUES 105
1.5.5 CHEMICAL ANALYSIS TECHNIQUES 105
1.5.6 NON-DESTRUCTIVE EVALUATION TEST METHODS. 105
1.6 FIBER TESTING AND ANALYTICAL METHODS 106
1.6.1 INTRODUCTION 106
1.6.2 MECHANICAL PROPERTY TEST METHODS 106
1.6.2.1 Tensile tests. 106
1.6.2.2 Creep and creep rupture .. 106
1.6.2.3 Bend stress relaxation 107
1.6.3 PHYSICAL PROPERTY TEST METHODS .. 107
1.6.3.1 Density 107
1.6.4 MICROSTRUCTURAL ANALYSIS TECHNIQUES 107
1.6.5 CHEMICAL ANALYSIS TECHNIQUES 107
1.6.6 ENVIRONMENTAL EFFECTS TEST METHODS.. 107
REFERENCES . 108
1.7 FIBER SIZING TESTING AND ANALYTICAL METHODS.. 109
1.7.1 INTRODUCTION 109
1.7.2 PHYSICAL PROPERTY TEST METHODS .. 109
1.7.3 CHEMICAL ANALYSIS TECHNIQUES 109
1.8 FIBER COATINGS, INTERFACES AND INTERPHASES TESTING AND ANALYTICAL METHODS.110
1.8.1 INTRODUCTION .110
1.8.2 MECHANICAL PROPERTY TEST METHODS.110
1.8.3 PHYSICAL PROPERTY TEST METHODS 110
1.8.4 MICROSTRUCTURAL ANALYSIS TECHNIQUES.110
1.8.5 CHEMICAL ANALYSIS TECHNIQUES.110
1.9 MATRIX TESTING AND ANALYTICAL METHODS.111
1.9.1 INTRODUCTION .111
1.9.2 MECHANICAL TEST METHODS 111
1.9.2.1 Tension 111
1.9.2.2 Creep111
1.9.2.3 Stress relaxation .111
1.9.2.4 Fatigue.112
1.9.3 PHYSICAL TEST METHOD112
1.9.3.1 Density.112
1.9.4 MICROSTRUCTURAL ANALYSIS TECHNIQUES.112
1.9.4.1 Microstructural analysis techniques titanium 112
1.9.4.2 Microstructural analysis techniques aluminum112
1.9.5 CHEMICAL ANALYSIS TECHNIQUES.112
1.9.6 ENVIRONMENTAL EFFECTS TEST METHODS112
REFERENCES ..113
1.10 STRUCTURE SENSITIVE PROPERTIES CHARACTERIZATION .114
1.10.1 INTRODUCTION .114
1.10.2 MECHANICALLY-FASTENED JOINTS.114
1.10.3 BONDED, BRAZED, AND WELDED JOINTS..114
1.10.4 CURVED SHAPES .114
1.10.5 STRUCTURAL DESIGN DETAILS .114
1.10.6 TRANSITION AND OTHER SPECIAL REGIONS ..114
1.10.7 SIZE EFFECTS.114
1.10.8 OTHER TOPICS..114
1.11 ANALYSIS OF DATA115
1.11.1 GENERAL115
1.11.2 PROCEDURES OF CALCULATION OF STATISTICALLY-BASED MATERIAL PROPERTIES ..115
1.11.3 SAMPLES OF COMPUTATIONAL PROCEDURES..115
1.11.4 STATISTICAL TABLES .115
2. DESIGN GUIDELINES FOR METAL MATRIX MATERIALS116
2.1 GENERAL INFORMATION..116
2.1.1 INTRODUCTION .116
2.1.2 PURPOSE, SCOPE, AND ORGANIZATION OF SECTION 2 ..116
2.2 USE OF DATA116
2.3 STRUCTURAL DESIGN AND ANALYSIS.116
2.3.1 Introduction .116
2.3.1.1 Analysis methodology classifications ..117
2.3.1.2 Basic concepts 117
2.3.2 GENERAL DESIGN GUIDELINES .119
2.3.3 ANALYSIS APPROACHES (CONTINUOUS FIBER MMC).. 120
2.3.3.1 Micromechanics 120
2.3.3.1.1 General relationships . 120
2.3.3.1.2 Effective elastic properties .. 122
2.3.3.1.3 Residual stresses. 126
2.3.3.1.4 Fiber-matrix bond strength.. 126
2.3.3.1.5 Overall inelastic strain 127
2.3.3.2 Viscoplastic constitutive relations . 127
2.3.3.2.1 Axial tensile response 127
2.3.3.2.2 Axial compressive response .. 127
2.3.3.2.3 Transverse tensile response.. 127
2.3.3.2.4 Transverse compressive response . 127
2.3.3.3 Macromechanics .. 127
2.3.3.3.1 Effective elastic properties .. 127
2.3.3.3.2 Effective strength . 127
2.3.3.3.3 Creep . 127
2.3.3.3.4 Multiaxial effects 127
2.3.3.4 Damage tolerance 127
2.3.3.5 Durability 127
2.3.3.6 Life prediction . 127
2.3.4 DESIGN GUIDELINES (DISCONTINUOUS FIBER REINFORCED MMC).. 128
2.3.4.1 Micromechanics 128
2.3.4.1.1 General relationships . 128
2.3.4.1.2 Effective elastic properties .. 128
2.3.4.1.3 Fiber-matrix bond strength.. 128
2.3.4.1.4 Inelastic mechanisms and damage. 128
2.3.4.2 Viscoplastic constitutive relations . 128
2.3.4.2.1 Tensile response .. 128
2.3.4.2.2 Compressive response . 128
2.3.4.2.3 Shear response. 128
2.3.4.3 Crack growth behavior 128
2.3.4.4 Durability 128
2.3.4.5 Life prediction . 128
2.4 APPLICATIONS AND CASE STUDIES 129
2.4.1 COMPONENTS FOR STRUCTURAL APPLICATIONS . 129
2.4.2 COMPONENTS FOR TRIBOLOGICAL APPLICATIONS.. 129
2.4.3 COMPONENTS FOR THERMAL MANAGEMENT APPLICATIONS 129
2.4.4 COMPONENTS FOR THERMAL EXPANSION CONTROL. 129
2.4.5 OTHER MISCELLANEOUS APPLICATIONS.. 129
REFERENCES . 130
3. MATERIALS PROPERTIES DATA.. 131
3.1 GENERAL INFORMATION. 131
3.1.1 INTRODUCTION 131
3.1.2 PURPOSE, SCOPE, AND ORGANIZATION OF SECTION. 131
3.1.3 PRESENTATION OF DATA .. 131
3.1.3.1 Properties and definitions . 131
3.1.3.1.1 Sign convention. 131
3.1.3.2 Table formats.. 131
3.1.3.3 Fatigue data. 142
REFERENCES . 142
3.2 REINFORCEMENT PROPERTIES 143
3.2.1 INTRODUCTION 143
3.2.2 ALUMINA FIBERS . 143
3.2.2.1 Introduction.. 143
3.2.2.2 Virgin Nextel TM 610 fiber .. 144
3.2.3 BORON FIBERS. 147
3.2.4 BORON CARBIDE FIBERS.. 147
3.2.5 CARBON AND GRAPHITE FIBERS. 147
3.2.6 SILICON CARBIDE FIBERS. 147
3.2.6.1 Virgin SCS-6 Fiber* . 148
3.2.7 STEEL FIBERS 150
3.2.8 TUNGSTEN FIBERS 151
3.2.9 OTHER FIBERS . 151
3.2.10 OTHER REINFORCEMENTS . 151
3.3 PROPERTIES OF MATRIX MATERIALS 152
3.3.1 INTRODUCTION 152
3.3.2 ALUMINUMS 152
3.3.3 COPPERS . 152
3.3.4 MAGNESIUMS 152
3.3.5 TITANIUMS 152
3.3.5.1 Ti-15V-3Cr-3Al-3Sn (NASA-GRC) 152
3.3.6 OTHERS. 165
3.4 FIBER COATING PROPERTIES. 166
3.4.1 INTRODUCTION 166
3.4.2 CARBON. 166
3.4.3 TITANIUM DIBORIDE.. 166
3.4.4 YTTRIA 166
3.4.5 OTHERS. 166
3.5 ALUMINUM MATRIX COMPOSITE PROPERTIES 167
3.5.1 INTRODUCTION 167
3.5.2 ALUMINA/ALUMINUM. 167
3.5.2.1 Nextel 610/pure Al panel .. 167
3.5.3 BORON/ALUMINUM. 172
3.5.4 BORON CARBIDE/ALUMINUM.. 172
3.5.5 GRAPHITE/ALUMINUM . 172
3.5.6 SILICON CARBIDE/ALUMINUM 172
3.5.7 STEEL/ALUMINUM .. 172
3.5.8 TUNGSTEN/ALUMINUM 172
3.5.9 OTHERS/ALUMINUM.. 172
3.6 COPPER MATRIX COMPOSITE PROPERTIES. 173
3.6.1 INTRODUCTION 173
3.6.2 GRAPHITE/COPPER .. 173
3.6.3 OTHERS/COPPER 173
3.7 MAGNESIUM MATRIX COMPOSITE PROPERTIES 174
3.7.1 INTRODUCTION 174
3.7.2 GRAPHITE/MAGNESIUM . 174
3.7.3 ALUMINA/MAGNESIUM. 174
3.7.4 OTHER/MAGNESIUM . 174
3.8 TITANIUM MATRIX COMPOSITE PROPERTIES.. 175
3.8.1 INTRODUCTION 175
3.8.2 SILICON CARBIDE/TITANIUM 175
3.8.2.1 SiC/Ti-15-3 .. 175
3.8.2.1.1 SiC/Ti-15-3 Tension. 175
3.8.2.1.2 SiC/Ti-15-3 Fatigue . 199
3.8.2.2 TRIMARC-1/Ti-6Al-2Sn-4Zr-2Mo wire/fiber wound plate* 206
3.8.2.2.1 TRIMARC-1/Ti-6Al-2Sn-4Zr-2Mo tension 206
3.8.2.2.2 TRIMARC-1/Ti-6Al-2Sn-4Zr-2Mo compression 228
3.8.3 ALUMINA/TITANIUM 243
3.8.4 OTHER/TITANIUM 243
3.9 OTHER MATRIX COMPOSITES. 243
APPENDIX A. TYPICAL PUSHOUT TEST DATA. 244
A1. FIBER PUSHOUT . 244
APPENDIX B. RAW DATA TABLES FOR MATRIX MATERIALS . 247
B1. ALUMINUMS 247
B2. COPPERS 247
B3. MAGNESIUMS 247
B4. TITANIUMS .. 247
B4.1 Ti 15V 3Cr 3Al-3Sn (Section 3.3.5.1) . 248
APPENDIX C. RAW DATA TABLES FOR METAL MATRIX COMPOSITE MATERIALS.. 252
C1. ALUMINUMS.. 252
C1.1 Nextel 610 / SP Al (Section 3.5.2.1) 253
C2. COPPER 263
C3. MAGNESIUMS 263
C4. TITANIUMS .. 264
C4.1 SiC/TI-15-3 (Section 3.8.2.1.1 and 3.8.2.1.2) 264
C4.2. TRIMARC-1/Ti 6-2-4-2 (Section 3.8.2.2.1 and 3.8.2.2.2) .. 286
INDEX 300
CONCLUDING MATERIAL…… ..303