MONORAIL BEAM ANALYSIS |
For S-shaped Underhung Monorails Analyzed as Simple-Spans with / without Overhang |
Per AISC 9th Edition ASD Manual and CMAA Specification No. 74 (2004) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Input: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Monorail Size: |
|
|
|
|
|
|
|
|
Select: |
|
|
|
|
|
|
|
|
Design Parameters: |
|
|
|
|
|
|
|
|
|
Beam Fy = |
|
ksi |
|
|
|
|
|
|
Beam Simple-Span, L = |
|
ft. |
|
|
|
|
|
|
Unbraced Length, Lb = |
|
ft. |
|
|
|
|
|
|
Bending Coef., Cb = |
|
|
|
|
|
|
|
|
Overhang Length, Lo = |
|
ft. |
|
|
Unbraced Length, Lbo = |
|
ft. |
|
|
|
|
|
|
Bending Coef., Cbo = |
|
|
|
Lifted Load, P = |
|
kips |
A = |
|
in.^2 |
d/Af = |
|
|
Trolley Weight, Wt = |
|
kips |
d = |
|
in. |
Ix = |
|
in.^4 |
Hoist Weight, Wh = |
|
kips |
tw = |
|
in. |
Sx = |
|
in.^3 |
Vert. Impact Factor, Vi = |
|
% |
bf = |
|
in. |
Iy = |
|
in.^4 |
Horz. Load Factor, HLF = |
|
% |
tf = |
|
in. |
Sy = |
|
in.^3 |
Total No. Wheels, Nw = |
|
|
k= |
|
in. |
J = |
|
in.^4 |
Wheel Spacing, S = |
|
ft. |
rt = |
|
in. |
Cw = |
|
in.^6 |
Distance on Flange, a = |
|
in. |
|
|
|
|
|
|
|
Support Reactions: |
|
|
|
Results: |
|
|
|
RR(max) = |
|
|
|
|
|
|
RL(min) = |
|
|
Parameters and Coefficients: |
|
|
|
|
|
|
|
Pv = |
|
kips |
|
|
|
|
Pw = |
|
kips/wheel |
|
|
|
|
Ph = |
|
kips |
|
|
|
|
|
ta = |
|
in. |
|
|
|
|
|
l = |
|
|
l = 2*a/(bf-tw) |
|
|
|
|
|
Cxo = |
|
|
Cxo = -1.096+1.095*l+0.192*e^(-6.0*l) |
|
|
|
Cx1 = |
|
|
Cx1 = 3.965-4.835*l-3.965*e^(-2.675*l) |
|
|
|
Czo = |
|
|
Czo = -0.981-1.479*l+1.120*e^(1.322*l) |
|
|
|
Cz1 = |
|
|
Cz1 = 1.810-1.150*l+1.060*e^(-7.70*l) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Bending Moments for Simple-Span: |
|
|
|
|
|
|
|
x = |
|
ft. |
|
|
Mx = |
|
ft-kips |
|
|
|
|
|
My = |
|
ft-kips |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lateral Flange Bending Moment from Torsion for Simple-Span: |
(per USS Steel Design Manual, 1981) |
e = |
|
in. |
|
|
|
at = |
|
|
|
|
Mt = |
|
ft-kips |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X-axis Stresses for Simple-Span: |
|
|
|
|
|
|
|
fbx = |
|
ksi |
|
|
|
|
|
|
Lb/rt = |
|
|
|
|
|
|
|
|
Fbx = |
|
ksi |
|
|
|
|
|
|
|
|
|
|
|
SR = |
|
|
|
|
|
|
|
|
|
|
|
Y-axis Stresses for Simple-Span: |
|
|
|
|
|
|
|
fby = |
|
ksi |
|
|
|
|
|
|
fwns = |
|
ksi |
|
|
|
fby(total) = |
|
ksi |
|
|
|
|
|
|
Fby = |
|
ksi |
|
|
|
|
|
|
|
|
|
|
|
|
|
SR = |
|
Combined Stress Ratio for Simple-Span: |
|
|
|
|
|
|
S.R. = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR = |
|
Vertical Deflection for Simple-Span: |
|
|
|
|
|
|
|
Pv = |
|
kips |
|
|
|
|
D(max) = |
|
in. |
D(max) = |
|
|
|
D(ratio) = |
|
|
D(ratio) = L*12/D(max) |
|
|
|
|
D(allow) = |
|
in. |
D(allow) = L*12/450 |
|
|
|
|
|
|
|
|
|
|
SR = |
|
|
Bending Moments for Overhang: |
|
|
|
|
|
|
|
Mx = |
|
ft-kips |
|
|
|
|
|
My = |
|
ft-kips |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lateral Flange Bending Moment from Torsion for Overhang: |
(per USS Steel Design Manual, 1981) |
e = |
|
in. |
|
|
|
at = |
|
|
|
|
Mt = |
|
ft-kips |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X-axis Stresses for Overhang: |
|
|
|
|
|
|
|
fbx = |
|
ksi |
|
|
|
|
|
|
Lbo/rt = |
|
|
|
|
|
|
|
|
Fbx = |
|
ksi |
|
|
|
|
|
|
|
|
|
|
SR = |
|
Y-axis Stresses for Overhang: |
|
|
|
|
|
|
|
fby = |
|
ksi |
|
|
|
|
|
|
fwns = |
|
ksi |
|
|
|
fby(total) = |
|
ksi |
|
|
|
|
|
|
Fby = |
|
ksi |
|
|
|
|
|
|
|
|
|
|
|
|
|
SR = |
|
Combined Stress Ratio for Overhang: |
|
|
|
|
|
|
S.R. = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR = |
|
Vertical Deflection for Overhang: |
|
Pv = |
|
kips |
|
|
|
|
D(max) = |
|
in. |
D(max) = |
|
D(ratio) = |
|
|
D(ratio) = Lo*12/D(max) |
|
|
|
|
D(allow) = |
|
in. |
D(allow) = Lo*12/450 |
|
|
|
|
|
|
|
|
|
|
SR = |
|
|
Bottom Flange Bending (simplified): |
|
|
|
|
|
|
|
be = |
|
in. |
|
|
|
|
tf2 = |
|
in. |
|
am = |
|
in. |
|
|
|
Mf = |
|
in.-kips |
|
|
|
|
|
|
Sf = |
|
in.^3 |
|
|
|
|
|
|
fb = |
|
ksi |
|
|
|
|
|
|
|
Fb = |
|
ksi |
|
|
|
|
|
|
|
|
|
|
|
|
|
SR = |
|
|
|
|
|
|
|
|
|
|
|
Bottom Flange Bending per CMAA Specification No. 74 (2004): |
(Note: torsion is neglected) |
|
|
|
|
|
|
|
|
|
|
|
Local Flange Bending Stress @ Point 0: |
|
(Sign convention: + = tension, - = compression) |
sxo = |
|
ksi |
sxo = Cxo*Pw/ta^2 |
|
|
|
szo = |
|
ksi |
szo = Czo*Pw/ta^2 |
|
|
|
|
|
|
|
|
|
Local Flange Bending Stress @ Point 1: |
|
|
|
sx1 = |
|
ksi |
sx1 = Cx1*Pw/ta^2 |
|
|
sz1 = |
|
ksi |
sz1 = Cz1*Pw/ta^2 |
|
|
|
|
|
|
|
|
|
Local Flange Bending Stress @ Point 2: |
|
|
|
sx2 = |
|
ksi |
sx2 = -sxo |
|
|
sz2 = |
|
ksi |
sz2 = -szo |
|
|
|
|
|
|
|
|
|
Resultant Biaxial Stress @ Point 0: |
|
|
|
|
sz = |
|
ksi |
sz = fbx+fby+0.75*szo |
|
|
|
|
sx = |
|
ksi |
sx = 0.75*sxo |
|
|
|
|
|
txz = |
|
ksi |
txz = 0?? (assumed negligible) |
|
|
|
|
sto = |
|
ksi |
sto = SQRT(sx^2+sz^2-sx*sz+3*txz^2) |
|
|
|
|
|
|
|
|
|
SR = |
|
Resultant Biaxial Stress @ Point 1: |
|
|
|
|
|
|
|
sz = |
|
ksi |
sz = fbx+fby+0.75*sz1 |
|
|
|
|
sx = |
|
ksi |
sx = 0.75*sx1 |
|
|
|
|
|
txz = |
|
ksi |
txz = 0?? (assumed negligible) |
|
|
|
|
st1 = |
|
ksi |
st1 = SQRT(sx^2+sz^2-sx*sz+3*txz^2) |
|
|
|
|
|
|
|
|
|
SR = |
|
Resultant Biaxial Stress @ Point 2: |
|
|
|
|
|
|
|
sz = |
|
ksi |
sz = fbx+fby+0.75*sz2 |
|
|
|
|
sx = |
|
ksi |
sx = 0.75*sx2 |
|
|
|
|
|
txz = |
|
ksi |
txz = 0?? (assumed negligible) |
|
|
|
|
st2 = |
|
ksi |
st2 = SQRT(sx^2+sz^2-sx*sz+3*txz^2) |
|
|
|
|
|
|
|
|
|
SR = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S-Beam Configurations |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|