MONORAIL BEAM ANALYSIS
|
For W-shaped
Underhung Monorails Analyzed as Simple-Spans with / without Overhang
|
Per AISC 9th
Edition ASD Manual and CMAA Specification No. 74 (2004)
|
Input:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Monorail
Size:
|
|
|
|
|
|
|
|
|
Select:
|
|
|
|
|
|
|
|
|
Design
Parameters:
|
|
|
|
|
|
|
|
|
Beam Fy =
|
|
ksi
|
|
|
|
|
|
|
Beam Simple-Span, L
=
|
|
ft.
|
|
|
|
|
|
|
Unbraced Length, Lb
=
|
|
ft.
|
|
|
|
|
|
|
Bending Coef., Cb =
|
|
|
|
|
|
|
|
|
Overhang Length, Lo
=
|
|
ft.
|
|
Unbraced Length, Lbo
=
|
|
ft.
|
|
|
|
|
|
|
Bending Coef., Cbo =
|
|
|
|
Lifted Load, P =
|
|
kips
|
A =
|
|
in.^2
|
d/Af =
|
|
|
Trolley Weight, Wt =
|
|
kips
|
d =
|
|
in.
|
Ix =
|
|
in.^4
|
Hoist Weight, Wh =
|
|
kips
|
tw =
|
|
in.
|
Sx =
|
|
in.^3
|
Vert. Impact Factor,
Vi =
|
|
%
|
bf =
|
|
in.
|
Iy =
|
|
in.^4
|
Horz. Load Factor,
HLF =
|
|
%
|
tf =
|
|
in.
|
Sy =
|
|
in.^3
|
Total No. Wheels, Nw
=
|
|
|
k=
|
|
in.
|
J =
|
|
in.^4
|
Wheel Spacing, S =
|
|
ft.
|
rt =
|
|
in.
|
Cw =
|
|
in.^6
|
Distance on Flange,
a =
|
|
in.
|
|
|
|
|
|
|
|
|
|
|
Support Reactions:
|
|
|
|
Results:
|
|
|
|
RR(max) =
|
|
|
|
|
|
|
RL(min) =
|
|
|
Parameters
and Coefficients:
|
|
|
|
|
|
|
|
|
Pv =
|
|
kips
|
|
Pw =
|
|
kips/wheel
|
|
Ph =
|
|
kips
|
|
ta =
|
|
in.
|
|
l =
|
|
|
l = 2*a/(bf-tw)
|
Cxo =
|
|
|
Cxo = -2.110+1.977*l+0.0076*e^(6.53*l)
|
Cx1 =
|
|
|
Cx1 = 10.108-7.408*l-10.108*e^(-1.364*l)
|
Czo =
|
|
|
Czo = 0.050-0.580*l+0.148*e^(3.015*l)
|
Cz1 =
|
|
|
Cz1 = 2.230-1.490*l+1.390*e^(-18.33*l)
|
|
|
|
|
|
|
|
|
|
|
Bending
Moments for Simple-Span:
|
|
|
|
|
|
|
|
x =
|
|
ft.
|
|
Mx =
|
|
ft-kips
|
|
My =
|
|
ft-kips
|
|
|
|
|
|
|
|
|
|
|
|
Lateral
Flange Bending Moment from Torsion for Simple-Span:
|
|
(per USS Steel Design
Manual, 1981)
|
e =
|
|
in.
|
|
at =
|
|
|
|
Mt =
|
|
ft-kips
|
|
|
|
|
|
|
|
|
|
|
|
X-axis
Stresses for Simple-Span:
|
|
|
|
|
|
|
|
fbx =
|
|
ksi
|
|
|
SR =
|
|
|
|
Lb/rt =
|
|
|
|
|
|
|
Fbx =
|
|
ksi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(continued)
|
|
Y-axis
Stresses for Simple-Span:
|
|
|
|
|
|
|
|
fby =
|
|
ksi
|
|
|
|
|
|
fwns =
|
|
ksi
|
|
|
|
|
fby(total) =
|
|
ksi
|
|
|
|
|
Fby =
|
|
ksi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
Combined
Stress Ratio for Simple-Span:
|
|
|
|
|
|
|
|
S.R. =
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
Vertical
Deflection for Simple-Span:
|
|
|
|
|
|
|
|
Pv =
|
|
kips
|
|
|
|
|
D(max) =
|
|
in.
|
D(max) =
|
|
D(ratio)
=
|
|
|
D(ratio) = L*12/D(max)
|
|
|
|
|
D(allow)
=
|
|
in.
|
D(allow) = L*12/450
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bending
Moments for Overhang:
|
|
|
|
|
|
|
|
Mx =
|
|
ft-kips
|
|
|
|
My =
|
|
ft-kips
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lateral
Flange Bending Moment from Torsion for Overhang:
|
|
(per USS Steel Design
Manual, 1981)
|
e =
|
|
in.
|
|
|
at =
|
|
|
|
|
Mt =
|
|
ft-kips
|
|
|
|
|
|
|
|
|
|
|
|
|
X-axis
Stresses for Overhang:
|
|
|
|
|
|
|
|
fbx =
|
|
ksi
|
|
|
|
|
Lbo/rt =
|
|
|
|
|
|
|
Fbx =
|
|
ksi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
Y-axis
Stresses for Overhang:
|
|
|
|
|
|
|
|
fby =
|
|
ksi
|
|
|
|
|
|
|
fwns =
|
|
ksi
|
|
|
|
|
fby(total) =
|
|
ksi
|
|
|
|
|
Fby =
|
|
ksi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
Combined
Stress Ratio for Overhang:
|
|
|
|
|
|
|
|
S.R. =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
|
|
|
|
|
|
|
|
|
|
Vertical
Deflection for Overhang:
|
|
Pv =
|
|
kips
|
|
|
D(max) =
|
|
in.
|
D(max) =
|
|
D(ratio)
=
|
|
|
D(ratio) = Lo*12/D(max)
|
|
|
|
|
D(allow)
=
|
|
in.
|
D(allow) = Lo*12/450
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
|
Bottom
Flange Bending (simplified):
|
|
|
|
|
|
|
|
be =
|
|
in.
|
|
|
am =
|
|
in.
|
|
|
Mf =
|
|
in.-kips
|
|
|
|
Sf =
|
|
in.^3
|
|
|
|
fb =
|
|
ksi
|
|
|
|
|
Fb =
|
|
ksi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bottom
Flange Bending per CMAA Specification No. 74 (2004):
|
|
(Note: torsion is
neglected)
|
|
|
|
|
|
|
|
|
|
|
|
Local
Flange Bending Stress @ Point 0:
|
|
(Sign convention: + = tension, - = compression)
|
sxo =
|
|
ksi
|
sxo = Cxo*Pw/ta^2
|
|
|
|
|
szo =
|
|
ksi
|
szo = Czo*Pw/ta^2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Local
Flange Bending Stress @ Point 1:
|
|
|
|
|
|
|
|
sx1 =
|
|
ksi
|
sx1 = Cx1*Pw/ta^2
|
|
|
|
|
sz1 =
|
|
ksi
|
sz1 = Cz1*Pw/ta^2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Local
Flange Bending Stress @ Point 2:
|
|
|
|
|
|
|
|
sx2 =
|
|
ksi
|
sx2 = -sxo
|
|
|
|
|
|
sz2 =
|
|
ksi
|
sz2 = -szo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resultant
Biaxial Stress @ Point 0:
|
|
|
|
|
|
|
|
sz =
|
|
ksi
|
sz = fbx+fby+0.75*szo
|
|
|
|
sx =
|
|
ksi
|
sx = 0.75*sxo
|
|
|
|
|
txz =
|
|
ksi
|
txz
= 0 (assumed negligible)
|
|
|
|
|
sto =
|
|
ksi
|
sto
= SQRT(sx^2+sz^2-sx*sz+3*txz^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
Resultant
Biaxial Stress @ Point 1:
|
|
|
|
|
|
|
|
sz =
|
|
ksi
|
sz = fbx+fby+0.75*sz1
|
|
|
|
|
sx =
|
|
ksi
|
sx = 0.75*sx1
|
|
|
|
|
txz =
|
|
ksi
|
txz = 0 (assumed negligible)
|
|
|
|
|
st1 =
|
|
ksi
|
st1
= SQRT(sx^2+sz^2-sx*sz+3*txz^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
Resultant
Biaxial Stress @ Point 2:
|
|
|
|
|
|
|
|
sz =
|
|
ksi
|
sz = fbx+fby+0.75*sz2
|
|
|
|
|
sx =
|
|
ksi
|
sx = 0.75*sx2
|
|
|
|
|
txz =
|
|
ksi
|
txz = 0 (assumed negligible)
|
|
|
|
|
st2 =
|
|
ksi
|
st2
= SQRT(sx^2+sz^2-sx*sz+3*txz^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SR =
|
|
|
|
|
|
|
|
|
|
|
|
|