Related Resources: calculators
Uniform Temperature Differential Frame Deflections Equations and Calculator
Beam Deflection and Stress Equation and Calculators
Frame Deflections with Uniform Temperature Differential Between Outside and Inside Equations and Calculator.
Loading Configuration
General Designations
ALL calculators require a Premium Membership
Preview
Frame Deflections with Uniform temperature Rise Calculator:
General reaction and deformation expressions with right and left ends pinned
Horizontal Deflection at A:
Reaction locations are pinned therefore, the displacements = 0 = δHA
Angular Rotation at A:
Where:
Loading Terms LPH and LPM are given below.
Reaction loads and moments VA and VB, and HB can be evaluated from equilibrium equations after calculating HA and MA.
Note: t`; t2; and t3 are beam thicknesses from inside to outside
Reaction locations are pinned therefore, the Moments = 0 = MA = MB
Where:
Δo = Displacement (in, mm),
θo = Angular Displacement (radians),
W = Load or Force (lbsf, N),
w = Unit Load or force per unit length (lbs/in2, N/mm2),
Mo = Applied couple (moment) ( lbs-in, N-mm),
θo = Externally created angular displacement (radians),
Δo, = Externally created concentrated lateral displacement (in, mm),
T1 - T2 = Uniform temperature rise (°F),
To = Average Temperature (deg °F),
γ = Temperature coefficient of expansion [ µinch/(in. °F), µmm/(mm. °F) ],
T1, T2 = Temperature on outside and inside respectively (degrees),
HA, HB = Horizontal end reaction moments at the left and right, respectively, and are positive clockwise (lbs, N),
I1, I2, and I3 = Respective area moments of inertia for bending in the plane of the frame for the three members (in4, mm4),
E1, E2, and E3 = Respective moduli of elasticity (lb/in2, Pa) Related: Modulus of Elasticity, Yield Strength;
γ1, γ2, and γ3 = Respective temperature coefficients of expansions unit strain per. degree ( in/in/°F, mm/mm/°C),
l1, l2, l3 = Member lengths respectively (in, mm),
References:
Roark's Formulas for Stress and Strain